
led to re-defining what 
progress is

How to build a lean 
startup

step-by-step

what is a startup

human institution

delivering a new product/service

under extreme uncertainty

don't know the customer, market
whether the product works

we don't know what we don't know

why do startups fail

rarely
product failure

usely
no customers found

initial idea != eventual success

e.g. Paypal started as "beaming money 
between Palm pilots"

success = enough iterations before 
resources depleted

staying true to "original idea" while 
changing direction until the right 
execution of it will be found

iteration speed is crucial

intro to lean startup

speed is THE startup advantage

core

commodity tech stack

open source etc

leverage
for 1 unit of my work, I can leverage N^X 
units of work of other people

reduces costs

most importantly makes development a lot faster
IMVU took 6 months from start to first launch

in 2004
now, things can go a lot faster - even in a weekend

faster to find out if there are any 
customers for what we are building

customer development

continuous cycle of customer interaction

rigorous methodology to learning about 
customers for our product

document, testing assumptions
identifying scalability
then and only then increasing burn rates

agile SW development tuned to conditions of extreme unknowns

IMVU

original idea was to make an instant 
messaging add-on

to be compatible with any IM client
bring 3D avatars to existing clients
no switching costs for users

it turned out to be a completely wrong no issues in switching Im clients

personally had written 1000s of lines of 
code to do all the IM compabitility code

had done agile perfectly from pair 
programming to code reviews etc
still all that software turned out to utter waste

biggest source of waste is building 
something that nobody wants

product dev in a lean startup

product dev at lean startup

problem = unknown
solution = unknown

unit of progress: validated learning 
about customers ($$$)

code/docs/PR coverage doesn't matter if you didn't learn about your customers

will any practice we think of adopting increase 
the rate of learning about customers eliminate everything else

ideas -> code -> data ->
minimize total time thru this loop

don't sub-optimize any one step
e.g. removing metrics makes coding 
faster, but we learn a lot less

build -> measure -> learn ->

understanding ideas is key because 
execution is hard

if you don't see the big picture, you will 
feel that you are adding overhead
people will feel uncomfortable with these changes

compare to

traditional waterfall

unit of progress: advance to next stage
very linear progress
works only if you really know what 
problem are you solving and what you 
are solution to that problem is

e.g. port existing payroll system to a new 
platform

agile

designed for
problem=known
solution=unknown

unit of progress: a line of working code

any work that doesn't contribute to this, 
is actually waste

e.g. documents who nobody reads
e.g. eliminate code that "anticipates 
future" but doesn't do anything now

get rapid feedback from customers on what they want

payroll system example
get a payroll employee co-located with 
the team to provide customer insights

specific techniques

continuous deployment

at IMVU

50 deployments a day
20 minutes from checking it works locally it is running live

cluster immune system to revert bad changes

success requirements

deploy software quicklyautomatic certification process

tell a good change from a bad one quicklyautomated tests

unit tests
continuous integration tests

immune systembehavior measurement
e.g. if payments drop down from a 
standard value, then this change is broken

revert changes quicklyauto-revert e.g. if payments drop very fast

deploy small batches
at IMVU, large batch = 3 days worth of work

avoids a lot of integration issues also

break large projects down into small batches

instead of doing a lot of up front work, 
each small change gets deployedand tested and verified in live environment

cluster immune system

run tests locally
simple test, selenium

everyone has a complete sandbox

continuous integration server

buildot

all test must pass or "shut down the line"nobody can checkin code until problem is resolved

automatic feedback if the team is going too fast

incremental deploy
monitor cluster & business metrics real time

reject changes that move metrics out of bounds

altertin and predictive monitoring

Nagios
monitol all metrics that stakeholders care about

if anything out of bounds, wake 
somebody up

when customers see a failure
fix the problem for customer

improve your defenses at each level

DON'T JUST START BUILDING THIS

you are then back to waterfall
building something that worked for IMVU

instead build this as you build your systemget something that is adapted to your own needs

rapid split testing

A/B testing to vaidate hypotheses
create split-test in 1 line of code

everybody should be doing this
every change to production product 
should be tested

three A's of metrics

actionable

avoid vanity metricse.g. total hits on a site per day

split testing provides actionable results
e.g. how did that affect likelihood of 
users registering

accessibleunderstand what it really measures% of users registered today using this feature

auditable"metric are people too"behind every metric there is a person
can we validate that they really did what 
the mtrics claim they did

measure changes to high level business metrics
nobody cares about click-thru

but if it improves revenue / customer 
lifecycle etc, that is vital

five why's

root cause analysis
ask "why" five times when something 
unexpected happensfrom Toyota production system

make proportional investments in 
prevention at all five levels of hierarchy

no need to fix everything at one time
make follow-on investments if further issues occur

example

a server goes down, why?
piece of code destroyed it, why

uses an API that we didn't test, why?
we had a new employee who didn't code the tests, 
why?

he hadn't been trained, why?

his manager didn't believe in training
instead of instituting 6 week training program, perhaps 
just have a talk, build a wiki page etc

fix the cause, not just the symptom

counteracts if we are going too fast in 
product development

when failures occur, forces us to analyze 
why

behind every supposed technological 
problem is always a human problem

Q&A

deployments that are out of your control?

e.g. Iphone approval process
continuously deploy to the certification 
channel as fast as you can

apple's certification is slow and they 
might not like it

"what if we can prove to you that we can 
make reliable deployments every day. 
can we partner to make this go faster?"

alternatively move more of the logic of 
your application to the servermake tech tradeoff to make speed of iteration faster

what about teams with strong 
engineering DNA

engineers want to believe in release early & often
it is not about # of release. it is about 
learning from those releases

what about non-web deployed software?

e.g. traditional PC software

IMVU had a PC client

continous deployment for DL software
daily builds to a small % of customers

measure if their behavior is different nowtechnical & business metrics

how to organize if you don't have 
departments in the company

problem team
always have a current hypotheses of 
what the customer wants

solution team
agile development

creating experiments to validate problem 
team's hypotheses

cross-functionale.g. implementation resources in both teams

independent of eachpassing back and forth hypotheses, data, insight

iterative fashion

Eric's background

no formal training

books

Extreme programming
4 steps to the epiphany

lean development bookse.g. Toyota Way

blogs
venturehacks
sean o'malley

theory's is good, but
put it into practice

continuously improve


